Всего: 8 1–8
Добавить в вариант
В основании прямой четырехугольной призмы ABCDA1B1C1D1 лежит трапеция ABCD, у которой ∠C = 90°, BC и AD — основания, BC = CC1. Плоскость, которая проходит через ребро DC и вершину A1 призмы, образует угол
с плоскостью основания (см. рис.) и отсекает часть NC1CA1D1D. Если объем призмы равен 48, то объем оставшейся части равен … .
Каждое боковое ребро четырехугольной пирамиды образует с ее высотой, равной угол 30°. Основанием пирамиды является прямоугольник с углом 30° между диагоналями. Найдите объем пирамиды V, в ответ запишите значение выражения
Объем прямоугольного параллелепипеда ABCDA1B1C1D1 равен 1728. Точка P лежит на боковом ребре CC1 так, что CP : PC1 = 2 : 1. Через точку P, вершину D и середину бокового ребра AA1 проведена секущая плоскость, которая делит прямоугольный параллелепипед на две части. Найдите объём меньшей из частей.
Объем правильной треугольной пирамиды SABC равен 13. Через сторону основания ВС проведено сечение, делящее пополам двугранный угол SBCA и пересекающее боковое ребро SA в точке М. Объем пирамиды МАВС равен 6. Найдите значение выражения где
— угол между плоскостью основания и плоскостью боковой грани пирамиды SABC.
Основанием пирамиды SABCD является выпуклый четырехугольник ABCD, диагонали АС и BD которого перпендикулярны и пересекаются в точке O, АО = 9, ОС = 16, ВО = OD = 12. Вершина S пирамиды SABCD удалена на расстояние от каждой из прямых AB, BC, СD и AD. Через середину высоты пирамиды SABCD параллельно ее основанию проведена секущая плоскость, которая делит пирамиду на две части. Найдите значение выражения 10 · V, где V — объем большей из частей.
Найдите объем прямой призмы ABCDA1B1C1D1, в основании которой лежит параллелограмм ABCD, если длины ребер AB и AA1 равны 4 и 1 соответственно, а расстояние точки A1 до прямой CD равно 5.
В правильной треугольной пирамиде проведено сечение плоскостью, проходящей через боковое ребро и апофему противолежащей этому ребру боковой грани. Двугранный угол при ребре основания пирамиды равен 45°, а радиус окружности, описанной около сечения, равен Найдите объем пирамиды.